Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612864

RESUMO

Flavonoids exhibit various bioactivities including anti-oxidant, anti-tumor, anti-inflammatory, and anti-viral properties. Methylated flavonoids are particularly significant due to their enhanced oral bioavailability, improved intestinal absorption, and greater stability. The heterologous production of plant flavonoids in bacterial factories involves the need for enough biosynthetic precursors to allow for high production levels. These biosynthetic precursors are malonyl-CoA and l-tyrosine. In this work, to enhance flavonoid biosynthesis in Streptomyces albidoflavus, we conducted a transcriptomics study for the identification of candidate genes involved in l-tyrosine catabolism. The hypothesis was that the bacterial metabolic machinery would detect an excess of this amino acid if supplemented with the conventional culture medium and would activate the genes involved in its catabolism towards energy production. Then, by inactivating those overexpressed genes (under an excess of l-tyrosine), it would be possible to increase the intracellular pools of this precursor amino acid and eventually the final flavonoid titers in this bacterial factory. The RNAseq data analysis in the S. albidoflavus wild-type strain highlighted the hppD gene encoding 4-hydroxyphenylpyruvate dioxygenase as a promising target for knock-out, exhibiting a 23.2-fold change (FC) in expression upon l-tyrosine supplementation in comparison to control cultivation conditions. The subsequent knock-out of the hppD gene in S. albidoflavus resulted in a 1.66-fold increase in the naringenin titer, indicating enhanced flavonoid biosynthesis. Leveraging the improved strain of S. albidoflavus, we successfully synthesized the methylated flavanones hesperetin, homoeriodictyol, and homohesperetin, achieving titers of 2.52 mg/L, 1.34 mg/L, and 0.43 mg/L, respectively. In addition, the dimethoxy flavanone homohesperetin was produced as a byproduct of the endogenous metabolism of S. albidoflavus. To our knowledge, this is the first time that hppD deletion was utilized as a strategy to augment the biosynthesis of flavonoids. Furthermore, this is the first report where hesperetin and homoeriodictyol have been synthesized from l-tyrosine as a precursor. Therefore, transcriptomics is, in this case, a successful approach for the identification of catabolism reactions affecting key precursors during flavonoid biosynthesis, allowing the generation of enhanced production strains.


Assuntos
Anormalidades Craniofaciais , Flavonas , Flavonoides , Perfilação da Expressão Gênica , Hesperidina , Streptomyces , Aminoácidos , Tirosina
2.
Front Microbiol ; 15: 1378235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605703

RESUMO

Aromadendrin and taxifolin are two flavanonols (derived from the precursor naringenin) displaying diverse beneficial properties for humans. The carbon skeleton of these flavonoids may be transformed by the human gastrointestinal microbiota into other compounds, like auronols, which exert different and interesting biological activities. While research in flavonoids has become a certainly extensive field, studies about auronols are still scarce. In this work, different versions of the key plant enzyme for flavanonols biosynthesis, The flavanone 3-hydroxylase (F3H), has been screened for selecting the best one for the de novo production of these compounds in the bacterial factory Streptomyces albidoflavus UO-FLAV-004-NAR, a naringenin overproducer strain. This screening has rendered 2.6 µg/L of aromadendrin and 2.1 mg/L of taxifolin final production titers. Finally, the expression of the chalcone isomerase (CHI) from the gut bacterium Eubacterium ramulus has rendered a direct conversion (after feeding experiments) of 38.1% of (+)-aromadendrin into maesopsin and 74.6% of (+)-taxifolin into alphitonin. Moreover, de novo heterologous biosynthesis of 1.9 mg/L of alphitonin was accomplished by means of a co-culture strategy of a taxifolin producer S. albidoflavus and a CHI-expressing Escherichia coli, after the observation of the high instability of alphitonin in the culture medium. This study addresses the significance of culture time optimization and selection of appropriate enzymes depending on the desired final product. To our knowledge, this is the first time that alphitonin de novo production has been accomplished.

3.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542210

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon, with symptomatology influenced by factors including environmental, genomic, microbial, and immunological interactions. Gut microbiota dysbiosis, characterized by bacterial population alterations, contributes to intestinal homeostasis disruption and aberrant immune system activation, thereby exacerbating the inflammatory state. This study assesses the therapeutic efficacy of intraperitoneal (IP) injected flavonoids (apigenin, luteolin, and xanthohumol) in the reduction of inflammatory parameters and the modulation of the gut microbiota in a murine model of ulcerative colitis. Flavonoids interact with gut microbiota by modulating their composition and serving as substrates for the fermentation into other anti-inflammatory bioactive compounds. Our results demonstrate the effectiveness of luteolin and xanthohumol treatment in enhancing the relative abundance of anti-inflammatory microorganisms, thereby attenuating pro-inflammatory species. Moreover, all three flavonoids exhibit efficacy in the reduction of pro-inflammatory cytokine levels, with luteolin strongly demonstrating utility in alleviating associated physical UC symptoms. This suggests that this molecule is a potential alternative or co-therapy to conventional pharmacological interventions, potentially mitigating their adverse effects. A limited impact on microbiota is observed with apigenin, and this is attributed to its solubility constraints via the chosen administration route, resulting in its accumulation in the mesentery.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Propiofenonas , Ratos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Apigenina/farmacologia , Apigenina/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Colo , Inflamação/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Colite/tratamento farmacológico
4.
Nutrients ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542713

RESUMO

This work represents an overview of the current investigations involving organosulfur compounds and colorectal cancer. The molecules discussed in this review have been investigated regarding their impact on colorectal cancer directly, at the in vitro, in vivo, and clinical stages. Organosulfur compounds may have indirect effects on colorectal cancer, such as due to their modulating effects on the intestinal microbiota or their positive effects on intestinal mucosal health. Here, we focus on their direct effects via the repression of multidrug resistance proteins, triggering of apoptosis (via the inhibition of histone deacetylases, increases in reactive oxygen species, p53 activation, ß-catenin inhibition, damage in the mitochondrial membrane, etc.), activation of TGF-ß, binding to tubulin, inhibition of angiogenesis and metastasis mechanisms, and inhibition of cancer stem cells, among others. In general, the interesting positive effects of these nutraceuticals in in vitro tests must be further analyzed with more in vivo models before conducting clinical trials.


Assuntos
Neoplasias Colorretais , Compostos de Enxofre , Humanos , Apoptose , Suplementos Nutricionais , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474023

RESUMO

Flavonoids are a large family of polyphenolic compounds with important agro-industrial, nutraceutical, and pharmaceutical applications. Among the structural diversity found in the flavonoid family, methylated flavonoids show interesting characteristics such as greater stability and improved oral bioavailability. This work is focused on the reconstruction of the entire biosynthetic pathway of the methylated flavones diosmetin and chrysoeriol in Streptomyces albidoflavus. A total of eight different genes (TAL, 4CL, CHS, CHI, FNS1, F3'H/CPR, 3'-OMT, 4'-OMT) are necessary for the heterologous biosynthesis of these two flavonoids, and all of them have been integrated along the chromosome of the bacterial host. The biosynthesis of diosmetin and chrysoeriol has been achieved, reaching titers of 2.44 mg/L and 2.34 mg/L, respectively. Furthermore, an additional compound, putatively identified as luteolin 3',4'-dimethyl ether, was produced in both diosmetin and chrysoeriol-producing strains. With the purpose of increasing flavonoid titers, a 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate synthase (DAHP synthase) from an antibiotic biosynthetic gene cluster (BGC) from Amycolatopsis balhimycina was heterologously expressed in S. albidoflavus, enhancing diosmetin and chrysoeriol production titers of 4.03 mg/L and 3.13 mg/L, which is an increase of 65% and 34%, respectively. To the best of our knowledge, this is the first report on the de novo biosynthesis of diosmetin and chrysoeriol in a heterologous host.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase , Flavonas , Streptomyces , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Fosfatos , Flavonas/metabolismo , Flavonoides/química
6.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474789

RESUMO

BACKGROUND: Regular exercise has been described to modify both the diversity and the relative abundance of certain bacterial taxa. To our knowledge, the effect of a cycling stage race, which entails extreme physiological and metabolic demands, on the gut microbiota composition and its metabolic activity has not been analysed. OBJECTIVE: The aim of this cohort study was to analyse the dynamics of faecal microbiota composition and short-chain fatty acids (SCFAs) content of professional cyclists over a Grand Tour and their relationship with performance and dietary intake. METHODS: 16 professional cyclists competing in La Vuelta 2019 were recruited. Faecal samples were collected at four time points: the day before the first stage (A); after 9 stages (B); after 15 stages (C); and on the last stage (D). Faecal microbiota populations and SCFA content were analysed using 16S rRNA sequencing and gas chromatography, respectively. A principal component analysis (PCA) followed by Generalised Estimating Equation (GEE) models were carried out to explore the dynamics of microbiota and SCFAs and their relationship with performance. RESULTS: Bifidobacteriaceae, Coriobacteriaceae, Erysipelotrichaceae, and Sutterellaceae dynamics showed a strong final performance predictive value (r = 0.83, ranking, and r = 0.81, accumulated time). Positive correlations were observed between Coriobacteriaceae with acetate (r = 0.530) and isovalerate (r = 0.664) and between Bifidobacteriaceae with isobutyrate (r = 0.682). No relationship was observed between SCFAs and performance. The abundance of Erysipelotrichaceae at the beginning of La Vuelta was directly related to the previous intake of complex-carbohydrate-rich foods (r = 0.956), while during the competition, the abundance of Bifidobacteriaceae was negatively affected by the intake of simple carbohydrates from supplements (r = -0.650). CONCLUSIONS: An ecological perspective represents more realistically the relationship between gut microbiota composition and performance compared to single-taxon approaches. The composition and periodisation of diet and supplementation during a Grand Tour, particularly carbohydrates, could be designed to modulate gut microbiota composition to allow better performance.


Assuntos
Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Estudos de Coortes , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Ingestão de Alimentos , Exercício Físico , Carboidratos/análise
7.
Microb Cell Fact ; 22(1): 234, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964284

RESUMO

Flavonoids are important plant secondary metabolites showing antioxidant, antitumor, anti-inflammatory, and antiviral activities, among others. Methylated flavonoids are particularly interesting compared to non-methylated ones due to their greater stability and intestinal absorption, which improves their oral bioavailability. In this work we have stablished a metabolic engineered strain of Streptomyces albidoflavus with enhanced capabilities for flavonoid production, achieving a 1.6-fold increase in the biosynthesis of naringenin with respect to the parental strain. This improved strain, S. albidoflavus UO-FLAV-004, has been used for the heterologous biosynthesis of the methylated flavonoids sakuranetin, acacetin and genkwanin. The achieved titers of sakuranetin and acacetin were 8.2 mg/L and 5.8 mg/L, respectively. The genkwanin titers were 0.8 mg/L, with a bottleneck identified in this producing strain. After applying a co-culture strategy, genkwanin production titers reached 3.5 mg/L, which represents a 4.4-fold increase. To our knowledge, this study presents the first biosynthesis of methylated flavonoids in not only any Streptomyces species, but also in any Gram-positive bacteria.


Assuntos
Engenharia Metabólica , Streptomyces , Engenharia Metabólica/métodos , Flavonoides , Streptomyces/genética , Streptomyces/metabolismo
8.
Microb Cell Fact ; 22(1): 167, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644530

RESUMO

BACKGROUND: Naringenin is an industrially relevant compound due to its multiple pharmaceutical properties as well as its central role in flavonoid biosynthesis. RESULTS: On our way to develop Streptomyces albidoflavus J1074 as a microbial cell factory for naringenin production, we have significantly increased the yields of this flavanone by combining various metabolic engineering strategies, fermentation strategies and genome editing approaches in a stepwise manner. Specifically, we have screened different cultivation media to identify the optimal production conditions and have investigated how the additive feeding of naringenin precursors influences the production. Furthermore, we have employed genome editing strategies to remove biosynthetic gene clusters (BGCs) associated with pathways that might compete with naringenin biosynthesis for malonyl-CoA precursors. Moreover, we have expressed MatBC, coding for a malonate transporter and an enzyme responsible for the conversion of malonate into malonyl-CoA, respectively, and have duplicated the naringenin BGC, further contributing to the production improvement. By combining all of these strategies, we were able to achieve a remarkable 375-fold increase (from 0.06 mg/L to 22.47 mg/L) in naringenin titers. CONCLUSION: This work demonstrates the influence that fermentation conditions have over the final yield of a bioactive compound of interest and highlights various bottlenecks that affect production. Once such bottlenecks are identified, different strategies can be applied to overcome them, although the efficiencies of such strategies may vary and are difficult to predict.


Assuntos
Flavanonas , Microbiologia Industrial , Streptomyces , Engenharia Metabólica , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Flavanonas/biossíntese , Cerulenina/farmacologia , Fenilalanina/farmacologia , Tirosina/farmacologia
9.
Talanta ; 261: 124655, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196402

RESUMO

At present, although spectral imaging is known to have a great potential to provide a massive amount of valuable information, the lack of reference methods remains as one of the bottlenecks to access the full capacity of this technique. This work aims to present a staining-based reference method with digital image treatment for spectral imaging, in order to propose a fast, efficient, contactless and non-invasive analytical method to predict the presence of biofilms. Spectral images of Pseudomonasaeruginosa biofilms formed on high density polyethylene coupons were acquired in visible and near infrared (vis-NIR) range between 400 and 1000 nm. Crystal violet staining served as a biofilm indicator, allowing the bacterial cells and the extracellular matrix to be marked on the coupon. Treated digital images of the stained biofilms were used as a reference. The size and pixels of the hyperspectral and digital images were scaled and matched to each other. Intensity color thresholds were used to differentiate the pixels associate to areas containing biofilms from those ones placed in biofilm-free areas. The model facultative Gram-negative bacterium, P. aeruginosa, which can form highly irregularly shaped and heterogeneous biofilm structures, was used to enhance the strength of the method, due to its inherent difficulties. The results showed that the areas with high and low intensities were modeled with good performance, but the moderate intensity areas (with potentially weak or nascent biofilms) were quite challenging. Image processing and artificial neural networks (ANN) methods were performed to overcome the issues resulted from biofilm heterogeneity, as well as to train the spectral data for biofilm predictions.


Assuntos
Bactérias , Biofilmes , Coloração e Rotulagem , Processamento de Imagem Assistida por Computador
10.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240225

RESUMO

Eriodictyol is a hydroxylated flavonoid displaying multiple pharmaceutical activities, such as antitumoral, antiviral or neuroprotective. However, its industrial production is limited to extraction from plants due to its inherent limitations. Here, we present the generation of a Streptomyces albidoflavus bacterial factory edited at the genome level for an optimized de novo heterologous production of eriodictyol. For this purpose, an expansion of the Golden Standard toolkit (a Type IIS assembly method based on the Standard European Vector Architecture (SEVA)) has been created, encompassing a collection of synthetic biology modular vectors (adapted for their use in actinomycetes). These vectors have been designed for the assembly of transcriptional units and gene circuits in a plug-and-play manner, as well as for genome editing using CRISPR-Cas9-mediated genetic engineering. These vectors have been used for the optimization of the eriodictyol heterologous production levels in S. albidoflavus by enhancing the flavonoid-3'-hydroxylase (F3'H) activity (by means of a chimera design) and by replacing three native biosynthetic gene clusters in the bacterial chromosome with the plant genes matBC (involved in extracellular malonate uptake and its intracellular activation into malonyl-CoA), therefore allowing more malonyl-CoA to be devoted to the heterologous production of plant flavonoids in this bacterial factory. These experiments have allowed an increase in production of 1.8 times in the edited strain (where the three native biosynthetic gene clusters have been deleted) in comparison with the wild-type strain and a 13 times increase in eriodictyol overproduction in comparison with the non-chimaera version of the F3'H enzyme.


Assuntos
Actinobacteria , Actinobacteria/genética , Actinomyces , Flavonoides
11.
Antioxidants (Basel) ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107344

RESUMO

The microbiota-gut-brain axis is a complex interconnected system altered in schizophrenia. The antioxidant N-acetylcysteine (NAC) has been proposed as an adjunctive therapy to antipsychotics in clinical trials, but its role in the microbiota-gut-brain axis has not been sufficiently explored. We aimed to describe the effect of NAC administration during pregnancy on the gut-brain axis in the offspring from the maternal immune stimulation (MIS) animal model of schizophrenia. Pregnant Wistar rats were treated with PolyI:C/Saline. Six groups of animals were studied according to the study factors: phenotype (Saline, MIS) and treatment (no NAC, NAC 7 days, NAC 21 days). Offspring were subjected to the novel object recognition test and were scanned using MRI. Caecum contents were used for metagenomics 16S rRNA sequencing. NAC treatment prevented hippocampal volume reduction and long-term memory deficits in MIS-offspring. In addition, MIS-animals showed lower bacterial richness, which was prevented by NAC. Moreover, NAC7/NAC21 treatments resulted in a reduction of proinflammatory taxons in MIS-animals and an increase in taxa known to produce anti-inflammatory metabolites. Early approaches, like this one, with anti-inflammatory/anti-oxidative compounds, especially in neurodevelopmental disorders with an inflammatory/oxidative basis, may be useful in modulating bacterial microbiota, hippocampal size, as well as hippocampal-based memory impairments.

12.
J Phycol ; 59(2): 356-369, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690599

RESUMO

Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1 H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1 H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of ß-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.


Assuntos
Clorofíceas , Hexanos , Antibacterianos/farmacologia , Biofilmes
13.
Front Microbiol ; 13: 950855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246241

RESUMO

Chlorosphaerolactylate B, a newly discovered antimicrobial halometabolite from the cyanobacterium Sphaerospermopsis sp. LEGE 00249 has been synthesized in three steps by using 12-bromododecanoic acid as starting material. A total of 0.5 g was produced for in vitro and in vivo antimicrobial efficacy testing. In vitro, the minimal inhibitory concentration (MIC) was estimated to be 256 mg/L for Staphylococcus aureus, while the minimal biofilm inhibitory concentration (MBIC) was estimated to be 74 mg/L. The in vivo study utilized a porcine model of implant-associated osteomyelitis. In total, 12 female pigs were allocated into 3 groups based on inoculum (n = 4 in each group). An implant cavity (IC) was drilled in the right tibia and followed by inoculation and insertion of a steel implant. All pigs were inoculated with 10 µL containing either: 11.79 mg synthetic Chlorosphaerolactylate B + 104 CFU of S. aureus (Group A), 104 CFU of S. aureus (Group B), or pure saline (Group C), respectively. Pigs were euthanized five days after inoculation. All Group B animals showed macroscopic and microscopic signs of bone infection and both tissue and implant harbored S. aureus bacteria (mean CFU on implants = 1.9 × 105). In contrast, S. aureus could not be isolated from animals inoculated with saline. In Group A, two animals had a low number of S. aureus (CFU = 6.7 × 101 and 3.8 × 101, respectively) on the implants, otherwise all Group A animals were similar to Group C animals. In conclusion, synthetic Chlorosphaerolactylate B holds potential to be a novel antimicrobial and antibiofilm compound.

14.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563376

RESUMO

Streptomyces DNA replication starts with the DnaA binding to the origin of replication. Differently to most bacteria, cytokinesis only occurs during sporulation. Cytokinesis is modulated by the divisome, an orderly succession of proteins initiated by FtsZ. Here, we characterised SCO2102, a protein harbouring a DnaA II protein-protein interaction domain highly conserved in Streptomyces. The ΔSCO2102 knockout shows highly delayed sporulation. SCO2102-mCherry frequently co-localises with FtsZ-eGFP during sporulation and greatly reduces FtsZ-eGFP Z-ladder formation, suggesting a role of SCO2102 in sporulation. SCO2102 localises up-stream of SCO2103, a methylenetetrahydrofolate reductase involved in methionine and dTMP synthesis. SCO2102/SCO2103 expression is highly regulated, involving two promoters and a conditional transcription terminator. The ΔSCO2103 knockout shows reduced DNA synthesis and a non-sporulating phenotype. SCO2102-mCherry co-localises with SCO2103-eGFP during sporulation, and SCO2102 is essential for the SCO2103 positioning at sporulating hyphae, since SCO2103-eGFP fluorescent spots are absent in the ΔSCO2102 knockout. We propose a model in which SCO2102 positions SCO2103 in sporulating hyphae, facilitating nucleotide biosynthesis for chromosomal replication. To the best of our knowledge, SCO2102 is the first protein harbouring a DnaA II domain specifically found during sporulation, whereas SCO2103 is the first methylenetetrahydrofolate reductase found to be essential for Streptomyces sporulation.


Assuntos
Esporos Bacterianos , Streptomyces , Proteínas de Bactérias/metabolismo , Replicação do DNA/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Domínios e Motivos de Interação entre Proteínas , Origem de Replicação , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
15.
Int J Biol Macromol ; 203: 638-649, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090944

RESUMO

Polyhydroxybutyrate (PHB) is a non-toxic polyhydroxyalkanoate polymer produced by several microorganisms, widely used as a biological substitute for plastics derived from fossil hydrocarbons. In this work, PHB polymer has been tested in an animal model for colorectal cancer. In the animal model, PHB has been able to reduce the number of polyps by 48,1%, and the tumoral extension area by 58,1%. Also, PHB induces a selective increase in beneficial gut bacterial taxons in this animal model, and a selective reduction in pro-inflammatory taxons, demonstrating its value as a nutraceutical compound. This antitumor effect is caused by gut production of 3-hydroxybutyrate and butyrate. In this animal model, 3-hydroxybutyrate is also observed in plasma and in brain tissue, after PHB consumption, making PHB supplementation interesting as a bioactive compound in other extraintestinal conditions, as 3-hydroxybutyrate has been reported to enhance brain and cognitive function, cardiac performance, appetite suppression and diabetes. Therefore, PHB could be postulated as an interesting non-polysaccharide antitumor prebiotic, paving the way towards its future use in functional foods.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Poli-Hidroxialcanoatos , Animais , Neoplasias Colorretais/tratamento farmacológico , Hidroxibutiratos/farmacologia , Modelos Animais , Poliésteres , Ratos
16.
Mar Drugs ; 19(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940674

RESUMO

Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cianobactérias , Lipídeos/farmacologia , Microalgas , Animais , Antibacterianos/química , Organismos Aquáticos , Lipídeos/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
17.
Biomed Pharmacother ; 143: 112241, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649363

RESUMO

Flavonoids are plant bioactive compounds of great interest in nutrition and pharmacology, due to their remarkable properties as antioxidant, anti-inflammatory, antibacterial, antifungal and antitumor drugs. More than 5000 different flavonoids exist in nature, with a huge structural diversity and a plethora of interesting pharmacological properties. In this work, five flavonoids were tested for their potential use as antitumor drugs against three CRC cell lines (HCT116, HT-29 and T84). These cell lines represent three different stages of this tumor, one of which is metastatic. Xanthohumol showed the best antitumor activity on the three cancer cell lines, even better than that of the clinical drug 5-fluorouracil (5-FU), although no synergistic effect was observed in the combination therapy with this drug. On the other hand, apigenin and luteolin displayed slightly lower antitumor activities on these cancer cell lines but showed a synergistic effect in combination with 5-FU in the case of HTC116, which is of potential clinical interest. Furthermore, a literature review highlighted that these flavonoids show very interesting palliative effects on clinical symptoms such as diarrhea, mucositis, neuropathic pain and others often associated with the chemotherapy treatment of CRC. Flavonoids could provide a double effect for the combination treatment, potentiating the antitumor effect of 5-FU, and simultaneously, preventing important side effects of 5-FU chemotherapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Flavonoides/farmacologia , Cuidados Paliativos , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apigenina/farmacologia , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Flavanonas/farmacologia , Fluoruracila/farmacologia , Células HCT116 , Células HT29 , Humanos , Luteolina/farmacologia , Propiofenonas/farmacologia
18.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34576306

RESUMO

Streptomycetes are important biotechnological bacteria that produce several clinically bioactive compounds. They have a complex development, including hyphae differentiation and sporulation. Cytosolic copper is a well-known modulator of differentiation and secondary metabolism. The interruption of the Streptomyces coelicolor SCO2730 (copper chaperone, SCO2730::Tn5062 mutant) blocks SCO2730 and reduces SCO2731 (P-type ATPase copper export) expressions, decreasing copper export and increasing cytosolic copper. This mutation triggers the expression of 13 secondary metabolite clusters, including cryptic pathways, during the whole developmental cycle, skipping the vegetative, non-productive stage. As a proof of concept, here, we tested whether the knockdown of the SCO2730/31 orthologue expression can enhance secondary metabolism in streptomycetes. We created a SCO2730/31 consensus antisense mRNA from the sequences of seven key streptomycetes, which helped to increase the cytosolic copper in S. coelicolor, albeit to a lower level than in the SCO2730::Tn5062 mutant. This antisense mRNA affected the production of at least six secondary metabolites (CDA, 2-methylisoborneol, undecylprodigiosin, tetrahydroxynaphtalene, α-actinorhodin, ε-actinorhodin) in the S. coelicolor, and five (phenanthroviridin, alkylresorcinol, chloramphenicol, pikromycin, jadomycin G) in the S. venezuelae; it also helped to alter the S. albus metabolome. The SCO2730/31 consensus antisense mRNA designed here constitutes a tool for the knockdown of SCO2730/31 expression and for the enhancement of Streptomyces' secondary metabolism.


Assuntos
Proteínas de Bactérias/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Metabolismo Secundário , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Chaperonas Moleculares/genética , Streptomyces coelicolor/genética
19.
Antioxidants (Basel) ; 10(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439512

RESUMO

Synthetic antioxidant food additives, such as BHA, BHT and TBHQ, are going through a difficult time, since these products generate a negative perception in consumers. This has generated an increased pressure on food manufacturers to search for safer natural alternatives like phytochemicals (such as polyphenols, including flavonoids, and essential oils rich in terpenoids, including carotenoids). These plant bioactive compounds have antioxidant activities widely proven in in vitro tests and in diverse food matrices (meat, fish, oil and vegetables). As tons of food are wasted every year due to aesthetic reasons (lipid oxidation) and premature damage caused by inappropriate packaging, there is an urgent need for natural antioxidants capable of replacing the synthetic ones to meet consumer demands. This review summarizes industrially interesting antioxidant bioactivities associated with terpenoids and polyphenols with respect to the prevention of lipid oxidation in high fat containing foods, such as meat (rich in saturated fat), fish (rich in polyunsaturated fat), oil and vegetable products, while avoiding the generation of rancid flavors and negative visual deterioration (such as color changes due to oxidized lipids). Terpenoids (like monoterpenes and carotenoids) and polyphenols (like quercetin and other flavonoids) are important phytochemicals with a broad range of antioxidant effects. These phytochemicals are widely distributed in fruits and vegetables, including agricultural waste, and are remarkably useful in food preservation, as they show bioactivity as plant antioxidants, able to scavenge reactive oxygen and nitrogen species, such as superoxide, hydroxyl or peroxyl radicals in meat and other products, contributing to the prevention of lipid oxidation processes in food matrices.

20.
Microb Biotechnol ; 14(5): 2009-2024, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216097

RESUMO

Flavonoids are important plant secondary metabolites, which were shown to have antioxidant, anti-inflammatory or antiviral activities. Heterologous production of flavonoids in engineered microbial cell factories is an interesting alternative to their purification from plant material representing the natural source. The use of engineered bacteria allows to produce specific compounds, independent of soil, climatic or other plant-associated production parameters. The initial objective of this study was to achieve an engineered production of two interesting flavanonols, garbanzol and fustin, using Streptomyces albus as the production host. Unexpectedly, the engineered strain produced several flavones and flavonols in the absence of the additional expression of a flavone synthase (FNS) or flavonol synthase (FLS) gene. It turned out that the heterologous flavanone 3-hydroxylase (F3H) has a 2-hydroxylase side activity, which explains the observed production of 7,4'-dihydroxyflavone, resokaempferol, kaempferol and apigenin, as well as the biosynthesis of the extremely rare 2-hydroxylated intermediates 2-hydroxyliquiritigenin, 2-hydroxynaringenin and probably licodione. Other related metabolites, such as quercetin, dihydroquercetin and eriodictyol, have also been detected in culture extracts of this recombinant strain. Hence, the enzymatic versatility of S. albus can be conveniently exploited for the heterologous production of a large diversity of plant metabolites of the flavonoid family.


Assuntos
Flavonoides , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Streptomyces
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...